

Comparison of Turbulence Modeling Strategies for Indoor Flows

Ammar M. Abdilghanie, Lance R. Collins & David A. Caughey

Sibley School of Mechanical and Aerospace Engineering, Cornell University

Objectives

- Modeling and simulation of the air flow inside the IFL(indoor flowfield laboratory at Syracuse University) using the CFD flow modeling software Fluent.
- Studying the effects of various inlet conditions (turbulence intensity, experimentally measured profiles) on the flow dynamics.
- Comparing the constant coefficient and the dynamic LES models.
- Studying the performance of k-\$\varepsilon\$ model as compared to LES model.

Fig.1 Indoor flowfield laboratory chamber

Summary of the results

1. Effects of Inlet turbulence intensity using the constant coefficient LES model

Fig.2 Mean velocity magnitude at mid-height (z/L=0)

- Significant differences between the laminar inflow case and the two cases with turbulent inlet conditions.
- The jet spreads and mixes with the room air faster when seeded with inlet turbulence.
- Modest differences between the 5% and 13% inlet turbulence intensity cases as the jet develops into a fully-developed state independent of further inlet turbulence.

2. Effects of experimentally determined profiles.

- The flow is sensitive to the inflow details close to the inlet.
- The effects of inlet profile details become less pronounced further away from the inlet.

Fig.3 Mean velocity magnitude near inlet (z/L=-.8)

Fig.4 Mean velocity magnitude near ceiling (z/L=.75)

3. Comparison of the constant coefficient and the dynamic LE\$ models.

• Model differences (not shown) are small especially far from the inlet where most of the turbulent kinetic energy is resolved.

4. Comparison of k-ε and LE\$ models

- k-ɛ model captures the mean velocity reasonably well and the results are in reasonable agreement with LES at high levels of inlet turbulence intensity.
- k- ϵ model shows no sensitivity to the level of inlet turbulence intensity.
- k- \(\epsilon \) model fails to capture the slow development of the jet into a turbulent state resulting in over prediction of the turbulence levels and the spreading rate close to the inlet.
- k- ϵ model fails to capture the complicated flow pattern near the ceiling and as a result under predicts the turbulence levels there.

Fig.5 turbulent kinetic energy from $k-\epsilon$ model near the inlet (z/L=-.6)

Fig.6 turbulent kinetic energy from $k-\epsilon$ & LES models near the inlet (z/L=-0.8)

Fig.7 turbulent kinetic energy from k-ε &LES models near the ceiling (z/L=0.75)

Acknowledgment

The research is supported in part by the Environmental Protection Agency, through the Syracuse University NY STAR Center for Environmental Quality Systems/EPA Indoor Environmental Research Program Collaboration.

References

- Abdilghanie, A.M., Collins, L.R., Caughey, D.A., "Comparison of Turbulence Modeling Strategies for Indoor Flows", J.Fluids Eng.May 2009, Volume 131, Issue 5, 051402.
- D. Marr, 2007 "Velocity Measurements in the Breathing Zone of a Moving Thermal Manikin within the Indoor Environment", Ph.D. thesis, Syracuse University.